Close Tue:
15.1, 15.2

Close Thur:
15.3
15.2 Double Integrals over General Region
Last time:
For the rectangular region, R :

$$
a \leq x \leq b, \quad c \leq y \leq d
$$

we learned
$\iint_{R} f(x, y) d A$

$$
\begin{aligned}
& =\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x \\
& =\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y
\end{aligned}
$$

In 15.2, we discuss regions other than rectangles.

The surface $z=x+3 y^{2}$ over the rectangular region $R=[0,1] \times[0,3]$

The surface $z=x+3 y^{2}$ over the triangular region with corners $(0,0),(1,0)$, and (1,3).

The surface $z=x+1$ over the region bounded by $y=x$ and $y=x^{2}$.

The surface $z=\sin (y) / y$ over the triangular region with corners (0,0), $(0, \pi / 2),(\pi / 2, \pi / 2)$.

Examples:

1. Let D be the triangular region in
the xy-plane with corners
$(0,0),(1,0),(1,3)$.
Evaluate $\iint_{D} x+3 y^{2} d A$
2. Find the volume of the solid bounded
by the surfaces $z=x+1, y=x^{2}$, $y=2 x, z=0$.
3. Draw the region of integration for

$$
\int_{0}^{\pi / 2} \int_{x}^{\pi / 2} \frac{\sin (y)}{y} d y d x
$$

then switch the order of integration.
4. Switch the order of integration for

$$
\int_{0}^{4} \int_{\sqrt{x}}^{2} \sin \left(y^{3}\right) d y d x
$$

Setting up a problem given in "words":

1. Find integrand

 Solve for "z" anywhere you see it. If there are two $z^{\prime} s$, then set up two double integrals (subtract at end).2. Region?

Graph the region in the $x y$-plane.
a) Graph all given x and y constraints.
b) And find the xy-curves where the surfaces (the z's) intersect.

Examples (directly from HW):
HW 15.2: Find the volume enclosed by
$z=4 x^{2}+4 y^{2}$ and the planes $x=0, y=2$,
$y=x$, and $z=0$.

HW 15.3:

Find the volume below $\mathrm{z}=18-2 \mathrm{x}^{2}-2 \mathrm{y}^{2}$ and above the xy-plane.

HW 15.3:

Find the volume enclosed by $-x^{2}-y^{2}+z^{2}=22$ and $z=5$.

HW 15.3:

Find the volume above the upper cone
$z=\sqrt{x^{2}+y^{2}}$ and
below $x^{2}+y^{2}+z^{2}=81$

An applied problem:

Your swimming pool has the following shape (viewed from above)

The bottom of the pool is a plane with depths as indicated (the pool gets deeper in a linear way from left-to-right)

Solution:

1. Surface?

Slope in y-direction $=0$
Slope in x-direction $=-4 / 10=-0.4$
Also the plane goes through $(0,0,0)$
Thus, the plane that describes the bottom of the pool is: $\quad z=-0.4 x+0 y$

2. Region?

The line on the right goes through $(20,0)$ and $(25,25)$, so it has slope $=5$ and it is given by the equation

$$
\begin{aligned}
& y=5(x-20)=5 x-100 \\
& x=(y+100) / 5=1 / 5 y+20
\end{aligned}
$$

or

The best way to describe this region is by thinking of it as a left-right region. On the left, we have $x=0$ On the right, we have $x=1 / 5 y+20$

Therefore, we have

$$
\int_{0}^{25}\left(\int_{0}^{\frac{1}{5} y+20}-0.4 x d x\right) d y=-741 . \overline{6} \mathrm{ft}^{3}
$$

