Close Tue: Close Thur:	15.1 <i>,</i> 15.2 15.3	Type 1 (Top/Bot)	Type 2 (Left/Right)
15.2 Double Int General Re	•		
Last time:			
For the rectangular region, R: $a \le x \le b$, $c \le y \le d$			
we learned			
$\iint_{R} f(x,y) dA$		For all x in the range, $a \le x \le b$, we have $g_1(x) \le y \le g_2(x)$	For all y in the range, $c \le y \le d$, we have $h_1(y) \le x \le h_2(y)$
$= \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx$ $= \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy$		$\int_{a}^{b} \left(\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) dy \right) dx$	$\int_{c}^{d} \left(\int_{h_{1}(y)}^{h_{2}(y)} f(x, y) dx \right) dy$

In 15.2, we discuss regions other than rectangles.

The surface $z = x + 3y^2$ over the rectangular region R = [0,1] x [0,3]

The surface $z = x + 3y^2$ over the triangular region with corners (0,0), (1,0), and (1,3).

The surface z = x + 1 over the region bounded by y = x and $y = x^2$.

The surface z = sin(y)/y over the triangular region with corners (0,0), (0, $\pi/2$), ($\pi/2$, $\pi/2$).

Examples:

 Let D be the triangular region in the xy-plane with corners (0,0), (1,0), (1,3).

Evaluate
$$\iint_{D} x + 3y^2 dA$$

2. Find the volume of the solid bounded by the surfaces z = x + 1, $y = x^2$, y = 2x, z = 0.

3. Draw the region of integration for

$$\int_{0}^{\pi/2} \int_{x}^{\pi/2} \frac{\sin(y)}{y} \, dy \, dx$$

then switch the order of integration.

4. Switch the order of integration for

$$\int_{0}^{4} \int_{\sqrt{x}}^{2} \sin(y^3) \, dy \, dx$$

Setting up a problem given in "words":

1. Find integrand

Solve for "z" anywhere you see it. If there are two z's, then set up two double integrals (subtract at end).

2. Region?

Graph the region in the *xy*-plane.

- a)Graph all given x and y constraints.
- b) And find the xy-curves where the surfaces (the z's) intersect.

Examples (directly from HW): **HW 15.2:** Find the volume enclosed by $z = 4x^2 + 4y^2$ and the planes x = 0, y = 2, y = x, and z = 0.

HW 15.3:

Find the volume below $z = 18 - 2x^2 - 2y^2$ and above the xy-plane. HW 15.3:

Find the volume enclosed by $-x^2 - y^2 + z^2 = 22$ and z = 5.

HW 15.3:

Find the volume above the upper cone

$$z = \sqrt{x^2 + y^2}$$
 and
below $x^2 + y^2 + z^2 = 81$

An applied problem:

Your swimming pool has the following shape (viewed from above)

The bottom of the pool is a plane with depths as indicated (the pool gets deeper in a linear way from left-to-right)

Solution:

1. Surface?

Slope in y-direction = 0 Slope in x-direction = -4/10 = -0.4Also the plane goes through (0, 0, 0) Thus, the plane that describes the bottom of the pool is: z = -0.4x + 0y

2. Region?

The line on the right goes through (20,0) and (25,25), so it has slope = 5 and it is given by the equation

or y = 5(x-20) = 5x - 100x = (y+100)/5 = 1/5 y + 20

The best way to describe this region is by thinking of it as a left-right region. On the left, we have x = 0On the right, we have x = 1/5 y + 20

Therefore, we have

$$\int_{0}^{25} \left(\int_{0}^{\frac{1}{5}y+20} -0.4 x \, dx \right) dy = -741.\,\overline{6} \, \text{ft}^{3}$$